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Abstract 
 
Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not ex-

press the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network 
model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the 
uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bush-
ing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness 
and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic re-
sponses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequen-
cies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network 
model. It is proven that the proposed model has more robust characteristics than a simple neural network model under 
step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the 
hybrid model results are almost identical to the linear model under several maneuvers.  
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-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

 
1. Introduction 

The bushing element is a hollow cylinder connect-
ing the outer steel cylindrical sleeve and the inner 
steel cylindrical rod. The inner rod is connected to the 
chassis frame and used to transfer forces from the 
wheel to the chassis frame. Due to the rubber materi-
als in the bushing, it has nonlinear characteristics in 
terms of load amplitudes and frequencies, and hys-
teresis. Since the characteristics of the rubber bushing 
significantly affect the accuracy of the vehicle dy-
namic simulation, it should be accurately modeled. 

The bushing forces depend not only on the instan-
taneous deformation but also on the past history of 

deformation. As a result, the hysteretic restoring force 
cannot be expressed by instantaneous displacement 
and velocity. This history-dependent characteristic of 
bushing makes it more difficult to model and analyze 
hysteretic systems. 

In commercial multi-body simulation programs, the 
linear model was widely used for the bushing element. 
This model treats the bushing element as a linear 
combination of three translational spring-dampers and 
three rotational spring-dampers. However, this type of 
bushing model cannot properly generate the hysteretic 
behavior of the bushing element. 

To get an accurate bushing model, a black-box ap-
proach was used. The technique of empirical model-
ing based on the neural network approach is able to 
describe both the amplitude-dependent and fre-
quency-dependent nonlinearities. The modeling is not 
based on any physical law but uses powerful mathe-
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matical tools to describe the behavior of complex 
systems. In principle, neural networks are simple 
algebraic functions containing many parameters. By 
applying gradient-based optimization algorithms, the 
neural network parameters can be adjusted to simu-
late the behavior of the system. As no differential 
equation is involved in the system, the neural network 
model is numerically efficient; however, it has some 
drawbacks in that it is difficult to interpret the physi-
cal meaning of the results. 

The bushing modeling using neural networks has 
been used by some researchers. Barber [1] studied the 
possibility of the artificial neural network for model-
ing the bushing. Sohn et al. [2] did vehicle dynamic 
simulations using the neural network-based bushing 
model. The main issue is how to achieve accurate 
data approximation over a wide range of frequencies 
and amplitudes achieved at the same time.  

The main purpose of this paper is to develop a neu-
ral network-based hybrid bushing model for over-
coming the instability of neural network model and 
accurately carrying out the full car simulation.  

 
2. Neural network models 

2.1 linear model 

The linear model can be represented by a viscous 
damper and elastic spring connected in parallel as 
shown in Fig. 1. The output force can be calculated as 
follows: 

 
o oF k x c x= +  (1) 

 
where k0 and c0 indicate the spring stiffness and 
damping coefficient, respectively. The parameter x is 
the spring deformation and x  is the time derivative 
of deformation. 

 
 

  
Fig. 1. linear model. 

ADAMS and RecurDyn adopt the linear model for 
the bushing element. This model represents the bush-
ing element as the linear combination of three transla-
tional spring-dampers and three rotational spring-
dampers. Bushing forces in the linear model can be 
calculated as follows: 

 
q q qF K q c q= +     , ,q x y z=  (2) 

q q q q qT K cθ θθ θ= +   , ,q x y z= ,  , ,q x y zθ θ θ θ=  (3) 

 
where qF  denotes the translational forces and qT  
means the rotational moments. ,q qK c indicate trans-
lational spring stiffness and damping coefficient 
along the x, y, and z axis, and ,

q q
K cθ θ  are rotational 

spring stiffness and damping coefficient about the x, y, 
and z axis. 

 
2.2 Neural network model 

The neural network structure with multiple inputs 
is shown in Fig. 2. The neuron collects the signals 
from all the inputs and multiplies them by weight 
factors. Then, an internal signal is built as the sum of 
the weighted inputs and a bias value is written by the 
Eq. (4). 

 

1 1 1 2 1 1
1

p

i i i ip i ij j i
j

n w x w x w x b w x b
=

= + + + + = +∑ ∑  

          i ib= +W x  (4) 
 

where the index i denotes the numbering of the neu-
ron. The output of a neuron of hidden layer is written 
as: 

 
1

1( )i i ia f n=  (5) 

 

 
 
Fig. 2. Neural network structure. 
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The activation function fi defines the sensitivity of 
the neuron according to the external stimulation. As 
the activation functions, a sigmoid function, a hyper-
bolic tangent sigmoid function, and a linear function 
are commonly used.  

The layer directly connected to the output is called 
the output layer and the remaining ones are called 
hidden layers. The outputs of the network are de-
scribed as a composite function of the individual lay-
ers. The network function is determined by both the 
weighting factors and the bias values. The network 
parameters contain information about the system 
behavior and have to be set or identified correctly if 
the network has to solve a given problem with suffi-
cient accuracy. 

The weight factors are updated on the basis of a 
comparison between the actual calculated output and 
its associated or given target. This algorithm is exe-
cuted in the loop until the network output matches the 
target exactly or with sufficient approximation. The 
accuracy of approximation is given by the squared 
error performance function E as: 

 
2 2

1 1
( ) ( ) ( )

N N

k k

E k k k
= =

= = −∑ ∑e t a  (6) 

 
where a(k) is the actual output, t(k) the corresponding 
calculated output and N the number of used input-
target pairs. The back propagation algorithm refers to 
the method of computing the gradient of the squared 
error function with respect to all the weights and bi-
ases by the application of the chain rule [3].  

 
3. Hybrid bushing model 

In a neural network model, the information about 
the system behavior is stored in both the weighting 
factors and the biases, which have no physical mean-
ings. In this study, the total bushing forces are com-
posed of two components, Flin and Fnn. The first com-
ponent Flin is the force from the linear model and de-
scribes the linear part of the bushing characteristics, 
which is called ‘backbone’ in this paper. The second 
one, Fnn, represents the force from the neural network 
wrapped around the linear model backbone, repre-
senting all the remaining effects occurring in the sys-
tem, mainly the frequency-dependent hysteresis. Fig. 
3 represents the structure of the hybrid bushing model. 

The neural network bushing model is proposed to 
take into consideration both the hysteresis and the 

nonlinearities of frequency and displacement of rub-
ber based on the dynamic test results of the rubber 
bushing elements. Since the rubber bush has hyster-
etic characteristics, the inputs and outputs of the pre-
vious steps affect the current outputs. Therefore, in-
puts and outputs of the past are used as the input data 
of the current step. The input components of the neu-
ral network are selected from the current displace-
ment, the past displacement and the past outputs. The 
value of the output layer is the rubber bush force. The 
structure of the model and the number of neurons of 
hidden layers were set as shown in Fig. 3. In this 
study, only one hidden layer with a hyperbolic tan-
gent sigmoid function is used. For the output layer, a 
linear function is applied to enable the network output 
to take any real positive or negative value.  

Fig. 4 represents the deformations of the bushing 
element between two bodies. The deformation of the 
rubber bushing can be represented as the following 
equation: 

 
 

  
Fig. 3. Structure of the combined model used in this study. 
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Fig. 4. Deformation between bushing points Pi and Pj. 
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Fig. 5. Structure of interface between ADAMS and 
MATLAB. 

 
ij j j i i= + − −d r s r s  (7) 

 
where ,   i jr r  are position vectors from the inertial 
reference frame to the body coordinate system of 
body i and body j, respectively. The vectors 

,   i js s are the position vectors of the bushing points Pi 
and Pj in the body coordinate system, respectively.  

To calculate the bushing forces in the ADAMS 
program under the SIMULINK environment, bushing 
deformation data are transferred to MATLAB. Then, 
MATLAB calculates bushing forces and these data 
are used for the next time step in the ADAMS pro-
gram. To consider the displacement history-
dependent bushing, a special routine is required for 
data storage and linear interpolation of the past inte-
gration steps. Therefore, a code which is written in 
MATLAB has been developed, which supplies the 
hybrid model with the correct input data and calcu-
lates the current bushing forces. To use the hybrid 
bushing model in the ADAMS program, an interface 
module is developed in this study. Fig. 5 shows the 
structure of the interface between ADAMS and 
MATLAB under Simulink environment. The proce-
dure for calculating bushing forces is shown in Fig. 6. 
At the first step, the bushing deformations and veloci-
ties are calculated in ADAMS. They are transferred to 
MATLAB through the input block of SIMULINK. In  

 
 
Fig. 6. Flow chart for the bushing force calculation. 

 
MATLAB, Flin are calculated by using the current 
deformation and velocity. From the current informa-
tion and past information, FNN can be calculated. The 
resultant forces are transmitted to ADAMS. The 
SFORCE element of ADAMS is used for the bushing 
forces. The dynamic equations are solved in ADAMS 
and then the next bushing deformation and velocity 
are calculated for the next step. Until the time meets 
“end” this process is repeated. 
 

4. Identification of the hybrid model 
4.1 Identification of the linear model characteristics 

Fig. 7 shows the bushing coordinate system. Ran-
dom excitation tests using MTS 3-axes rubber testing 
machine as shown in Fig. 8 are carried out to obtain 
the bushing characteristics [4]. The machine can ex-
cite 3-directional (axial, normal, and radial) motion at 
the same time. Figs. 9 and 10 represent the radial and 
axial bushing forces under the random excitation 
inputs, respectively.  

The random excitation input data were generated 
by using RPC  software supported by MTS, Inc. Ⅲ
The RPC  system has the foⅢ llowing sampling rates: 
51.2, 64, 102.4, 204.8, 256, 409.6, 512, 1024, 2048 
Hz. Since a sampling rate of 204.8 Hz was chosen 
with a frame size of 1024 points per frame, the time 
interval was calculated as 0.0049. 

The bushing stiffness and damping coefficient  
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Fig. 7. Bushing coordinate system. 

 
 

 
 
Fig. 8. Bushing test using MTS 3-axes tester. 

 
 

  
Fig. 9. Radial bushing force under random input. 

 
 

  
Fig. 10. Axial bushing force under random input. 

Table 1. Bushing stiffness and damping coefficients. 
 

Direction Stiffness [N/mm] Damping [Ns/mm] 
Radial 1518.73 15 
Axial 379.68 4.4 

 
changes as the amplitude and frequency change. In 
this study, the bushing stiffness is calculated through 
the linear fit as shown in Fig. 9 and Fig. 10. To obtain 
damping coefficients, harmonic tests with an ampli-
tude of 2 mm, frequency of 10 Hz for radial damping 
coefficient and test with amplitude of 3 mm, fre-
quency of 10 Hz for axial damping coefficient are 
performed.  

The radial and axial stiffness and damping coeffi-
cients are represented in Table 1. 

 
4.2 Identification of the neural network parameters 

Random test data are split into training and predic-
tion data sets. The prediction set should remain un-
seen by the network to enable verification. Only the 
training set is presented to the network within the 
training phase. The experimental data are scaled be-
fore training into the range between -1 and +1. This 
improves the convergence behavior of the training 
algorithm. The general procedure is to train the net-
work by using a training data set and to see how well 
the generalization is on a prediction set. It is an itera-
tive process.  

Since the bushing has hysteretic characteristics, the 
inputs and outputs of the previous steps affect the 
current outputs. Therefore, inputs and outputs of the 
past are used as the input data of the current step. The 
input components of the neural network are selected 
from the current displacement, past displacements, 
and past bushing forces. The value of the output layer 
is the bushing force. Through a trial-and-error process, 
the past five displacements and past five forces and 
one hidden layer with nine neurons are used as shown 
in Fig. 4.  

The simulation results using unseen data sets are 
compared to the experimental results. Table 2 repre-
sents the prediction errors. In the table2, Linear is the 
linear model, NN means the pure neural network 
model, and Hybrid indicates the hybrid model, re-
spectively. The RMS and MAX in the table 2 repre-
sent the root mean square errors and maximum errors, 
respectively.  

As shown in table 2, the linear model has more  
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Table 2. Comparison of prediction error (%). 
 

Axial Radial 
 

Linear NN Hybrid Linear NN Hybrid

RMS 9.8 5.1 4.8 11.9 4.3 4.6 

MAX 13.7 7.7 7.5 20.1 8.8 9.1 

 
errors than the others, and the NN model shows 
similar results with the hybrid results. It is shown that 
the errors of the hybrid model are less than 10% com-
pared to the experimental results under random exci-
tation. Therefore, the hybrid model can be acceptable 
as the accurate bushing model with stability for vehi-
cle dynamics simulation. 
 

5. Numerical examples 

5.1 3-axes bushing test 

Fig. 11 shows the ADAMS model for 3-axes bush-
ing test. The random excitation inputs of the axial, 
radial, and normal direction are imposed on the bush-
ing simultaneously. Fig. 12 and Fig. 13 represent the 
axial and radial bushing forces, respectively. We 
compared the simulation results with the experimental 
results. Table 3 shows the comparison of errors. In 
Table 3, the RMS ratio as written by the Eq. (8) is the 
ratio between the RMS (root mean square) of the 
experiment result and the RMS of the simulation error. 
ESR as shown in Eq. (9) is the error-to-signal-ratio of 
the estimated model. As a matter of fact, it is the ratio 
between the variance of the estimation error and the 
variance of the output. ESR lies in the range from 0 to 
1; ESR=1 means that the model only predicts the 
average value of the output. ESR=0 means that the 
model exactly predicts the output of the system. 

 
2

exp1

2
exp1

1 ( ( ) ( ))
RMS ratio

1 ( ( ))

T
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As shown in Table 3, the RMS ratio of the linear 

model is about two times compared to the hybrid 
model and the maximum error is more than two times. 
The NN model shows similar results to the hybrid  

Table 3. Comparisons of errors (%). 
 

Axial Radial 
 

linear NN Hybrid linear NN Hybrid
RMS 
ratio 10.9 5.2 5.1 5.1 3.0 3.0 

ESR 0.5 0.2 0.2 0.4 0.2 0.2 

MAX 24.9 9.3 8.4 20.7 8.3 7.8 
 

  
Fig. 11. ADAMS model for a 3-axes bushing test. 

 

  
Fig. 12. Axial bushing forces. 

 

  
Fig. 13. Radial bushing forces. 

 
model. The errors of the hybrid model are within 10% 
compared to the experimental results. 
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Fig. 14. Axial bushing forces. 
 
5.2 Step input test and simulation 

To investigate the difference between the neural 
network model and the hybrid model, a 4 mm step 
input excitation simulation is performed. Fig. 14 
shows the axial bushing forces. Experimental results 
show well the relaxation phenomenon according to 
time; however, simulation results do not represent it 
correctly. In particular, the neural network model 
(NN) diverges after 7.3 sec. This shows the instability 
of the neural network model under an unexpected 
excitation input. In this paper, a hybrid model is sug-
gested to overcome this phenomenon and obtain sta-
ble responses. 

 
5.3 Full car simulation 

To demonstrate the validity of the proposed bush-
ing model, a full-car simulation is performed as 
shown in Fig. 15. The ADAMS program is employed 
to model the full car. The full car model consists of a 
front and a rear suspension, a front and a rear stabi-
lizer bar, a steering system, a differential gear, and a 
frame. The front suspension is double-wishbone type 
suspension and a rear suspension is 5-link type sus-
pension. The total degrees of freedom are 78. The UA 
tire model in the ADAMS program is used and the 
suspension spring is modeled as a linear spring ele-
ment, and damping characteristics of the suspension 
are approximated into the spline function. The bush-
ing connecting the upper control arm and the frame is 
taken in hybrid model into account as shown in the 
left upper corner of Fig. 15. The direction of the axial 
bushing force is the longitudinal of the vehicle, the 
radial direction is the lateral, and the normal direction 
is the vertical. A pulse steer simulation and pot hole 
running simulation are carried out for the validation 
of the proposed model.  

  
Fig. 15. Full car model. 

 

 
 
Fig. 16. Steering wheel angle for pulse steer simulation. 

 
 
5.3.1 Pulse steer simulation 
Fig. 16 shows the steering wheel angle for pulse 

input maneuver. The initial velocity is 30 km/h. The 
front upper control arm bushing forces are compared 
in Figs. 17-19. As shown in the figures, the linear 
model shows good agreement with the hybrid model. 
This is because the maximum bushing force is within 
the linear region. As shown in Fig. 17, a peak differ-
ence between the hybrid and linear model at 7.15 sec 
is about 6.5 N (16.9%). In Fig. 18 and Fig. 19, peak 
differences are about 15 N (2.1%) and 4 N (3.6%), 
respectively. 

 
5.3.2 Pothole running simulation 
Fig. 20 shows the pothole shape. The initial veloc-

ity of the vehicle is 30 km/h. Bushing forces at the 
front upper control arm under the pothole simulation 
are compared in Figs. 21-23. As shown in the figures, 
the linear model shows good agreement with the hy-
brid model. However, in the case of the normal direc-
tion, a peak difference between the linear model and 
the hybrid model is about 215 N. This is because the 
maximum bushing force is over the linear region 
(about 2000 N). 
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Fig. 17. Axial bushing force for pulse input simulation. 
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Fig. 18. Radial bushing force for pulse input simulation. 
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Fig. 19. Normal bushing force for pulse input simulation. 

 
 

 
 
Fig. 20. Pothole shape. 

  
Fig. 21. Axial bushing force for pothole simulation. 

 
 

  
Fig. 22. Radial bushing force for pothole simulation. 

 
 

  
Fig. 23. Normal bushing force for pothole simulation. 

 
 
5.3.3 Fishhook simulation 
Fig. 24 shows the steer input angle, and Fig. 25 

represents the configuration of the chassis frame un-
der fishhook maneuver. Bushing forces at the front 
upper control arm of the fishhook simulation are  
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Fig. 24.Steer angle. 

 
 

 
 
Fig. 25. Configuration of chassis frame for fishhook simula-
tion. 

 
 

 
 
Fig. 26. Axial bushing force for fishhook simulation. 

 
compared in Figs. 26-28. As shown in the figures, the 
hybrid model does not diverge and shows similar 
results to the linear model. 

 
 
Fig. 27. Radial bushing force for fishhook simulation. 

 
 

 
 
Fig. 28. Normal bushing force for fishhook simulation. 
 

6. Conclusions 

In this paper, a hybrid neural network bushing 
model is suggested that was developed on the basis of 
two different modeling techniques and can be used in 
ADAMS. The linear model is used to create the 
backbone of the bushing model, and the neural net-
work model is used to describe the nonlinear hyster-
etic characteristics. Combining the advantages of both 
the linear model and the neural network approach, the 
hybrid bushing model is able to represent the complex 
behavior of experimental force-displacement data, 
including history-dependent hysteresis phenomena.  

The proposed hybrid modeling technique was vali-
dated by dynamic analyses of a 3-axes bushing model 
and a full car simulation. The numerical results were 
compared with the conventional linear model, the 
pure neural network model, and experimental results. 
As a result, a pure neural network model shows good 
results compared to the experimental results. How-
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ever, it shows undesirable responses under unex-
pected step excitation input. The hybrid bushing 
model has more stable responses than a neural net-
work model because of the linear model’s so-called 
backbone model. Therefore, this model is available to 
carry out vehicle dynamics simulation under versatile 
maneuvering with stability. It will need to be com-
pared with the full car test results in the future. 
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